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Introducción

La riqueza de especies, así como la ubicación de 
centros de diversificación y endemismo (hot-spots), son 
parámetros útiles en la toma de decisiones. Por ejemplo, 
si el objetivo es conservar áreas de excepcional valor 
biótico, determinar corredores para el libre movimiento 
de la biodiversidad o mitigar problemas ambientales o 
de salud, la información que proporciona la riqueza de 
especies siempre es atendida en primera instancia (Carroll 
y Pearson, 1998).

El conocer la riqueza de un sitio puede ayudar a 
evaluar la desaparición de especies promovida por el 
cambio de uso del suelo. Por ejemplo, en un estudio en 
Dinamarca hecho para diferentes tipos de vegetación se 

ilustra cómo las actividades humanas han contribuido a la 
reducción de poblaciones de Tilia cordata Mill. y Alnus 
glutinosa (L.) Gaertn. y a la expansión de Fagus sylvatica 
L., y, consecuentemente, a la reducción de la biodiversidad 
(Bradshaw y Holmqvist, 1999).

En México algunos estudios han mostrado que los 
valores de riqueza de especies son de utilidad para 
determinar el estado de conservación de algunas áreas 
(Juárez-Jaimes et al., 2007; Domínguez-Domínguez et 
al., 2008; Aguirre y Duivenvoorden, 2010). Sin embargo, 
estos estudios han sido a nivel local o regional. A escala 
nacional se carece de información de calidad en cuanto a la 
taxonomía y distribución geográfica de las especies. Desde 
hace varios lustros, a partir de la revisión de literatura y de 
consultas en diversos herbarios, tanto nacionales como del 
extranjero, se ha generado información para todo México 
de los valores de riqueza de especies de plantas vasculares 
a escalas pequeñas, como, por ejemplo, celdas de 1° × 
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Resumen. En diversos campos como biología y ecología, la información sobre la riqueza de especies y su distribución 
geográfica es fundamental para la toma de decisiones. Sin embargo, existen países que cuentan con información 
limitada a nivel nacional, como es el caso de México. Por lo tanto, consideramos importante generar un mapa de la 
distribución de la riqueza conocida y estimada de especies de plantas vasculares a nivel nacional. Para cumplir tal 
objetivo y mediante el uso de 2 métodos geoestadísticos (Kriging universal y Co-Kriging), se realizó la predicción 
espacial de riqueza de especies a partir de información contenida en celdas de 1° × 1°. Los resultados muestran que 
en México la riqueza varía desde 20 hasta 3 800 especies. Los estados con mayor riqueza conocida y estimada de 
especies son Chiapas, Guerrero y Oaxaca. Las 2 técnicas geoestadísticas empleadas demostraron ser una herramienta 
eficaz para calcular la predicción espacial de la riqueza de especies de plantas vasculares, debido a que el error medio 
y la media estandarizada del error de predicción fue cercano a 0.
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Abstract. In many fields of biology, information on species richness and geographic distribution is essential for 
decision-making. However, Mexico as many other countries does not has this information at national level; therefore 
we consider important to generate information about of the distribution of species richness both known and estimated 
at national level. In order to fulfill this objective and through the use of 2 geostatistical techniques (Kriging universal 
and Co-Kriging), we performed the spatial prediction of species richness from information contained in cells of 1° × 
1°. Results showed the occurrence of areas in Mexico with richness varying from 20 to 3 800 species. The states with 
the highest number of species are Chiapas, Guerrero and Oaxaca. The 2 geostatistical techniques employed showed 
to be efficient tools to estimate spatial predictions of species richness.
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1° de latitud y longitud (Villaseñor et al., 2005a, 2007). 
No obstante, esta información muestra autocorrelación 
espacial, es decir, la distribución espacial de la riqueza de 
especies presenta a nivel espacial un patrón de continuidad 
y de dependencia (Carroll y Pearson, 1998). Estos 2 
factores son importantes de tomarse en cuenta cuando el 
objetivo es evaluar patrones de distribución.

Los métodos estadísticos clásicos ignoran este 
problema, pues dan por hecho la estacionalidad en el 
espacio y el tiempo, la independencia entre los datos y 
una distribución idéntica de los parámetros. Sin embargo, 
estos supuestos no siempre se cumplen (Rossi et al., 1992). 
Por lo tanto, partiendo de la condicional de que el valor 
de la riqueza de especies de una celda no es independiente 
del valor de la riqueza de especies de las celdas contiguas 
y en consecuencia tienen dependencia espacial, para su 
análisis se han propuesto técnicas geoestadísticas que 
toman en cuenta estas características de los datos espaciales 
(Wagner, 2003). Los métodos heurísticos, sin embargo, dan 
respuesta a este problema. Entre las soluciones propuestas 
se encuentran el factor de inflación de la varianza (vif), el 
cual no debe exceder de 10 y el valor más bajo del criterio 
de información de Akaike (Der y Everitt, 2002).

Las técnicas geoestadísticas se basan principalmente 
en la distancia geográfica a celdas vecinas más que en el 
tamaño de celda. Esto brinda la ventaja de que las celdas 
o las unidades geográficas a comparar no necesariamente 

sean contiguas o se encuentren espaciadas a intervalos 
regulares. La estructura espacial de los datos se describe 
usualmente mediante un variograma experimental, el cual 
es básicamente una gráfica de la semivarianza entre pares 
de observaciones (por ejemplo, celdas) contra su distancia 
en un espacio geográfico. Un variograma se define 
mediante modelos teóricos permisibles (exponencial, 
esférico, logarítmico, etc.) y los parámetros sill (la 
diferencia del promedio al cuadrado de 2 observaciones 
independientes), range (la distancia máxima en la cual 
los pares de observaciones se pueden influenciar o están 
autocorrelacionados) y nugget (la varianza dentro de una 
unidad de muestreo) (Wagner, 2003). Una vez que la 
estructura de autocorrelación espacial se ha determinado 
con el variograma, es posible, por ejemplo, hacer una 
interpolación con el método Kriging para estimar 
matemáticamente la riqueza de especies y llenar las 
lagunas de información.

Otra aplicación de la geoestadística es utilizar taxa 
indicadores (sustitutos) para determinar la riqueza de 
especies en áreas que han sido pobremente inventariadas 
(Carroll y Pearson, 1998). Esto se puede hacer a través 
del análisis de un variograma cruzado (cross-variogram), 
el cual describe la dependencia espacial entre 2 variables 
medidas (Mulla y McBratney, 2002). Como en este caso 
son 2 variables (el taxón sustituto y los taxa desconocidos), 
se emplea un Co-Kriging para realizar la interpolación.

Figura 1. Mapa de México mostrando la división en celdas de 1° de latitud y longitud utilizada en este estudio (se indican el número 
de celdas).



Revista Mexicana de Biodiversidad 84: 1189-1199, 2013 
DOI: 10.7550/rmb.31811	 1191

El objetivo de este trabajo es generar un mapa de 
superficie de la riqueza estimada de especies de plantas 
vasculares para México, utilizando una malla de celdas 
de 1° de latitud y 1° de longitud. Para ello, se utilizaron 
técnicas geoestadísticas que permiten, como ya se indicó, 
analizar la distribución espacial de los valores de riqueza 
conocidos.

Materiales y métodos

Área de estudio. El área de estudio comprende el territorio 
de la República Mexicana, el cual abarca una superficie 
aproximada de 1 949 359 km2. La superficie fue dividida 
en celdas de 1° de latitud y 1° de longitud (Fig. 1). En total 
se obtuvieron 253 celdas.
Datos de riqueza de especies. La información de riqueza 
de especies por celda se obtuvo a partir de la revisión 
intensa (aunque no exhaustiva) de la literatura florístico-
taxonómica de México, de consultas a herbarios, tanto 
de México como del extranjero (detalles de gran parte de 
esta revisión en Villaseñor, 2003) y de algunos ejemplares 
citados en la base de datos en línea del Jardín Botánico 
de Missouri (http://www.tropicos.org). Se registraron 
22 928 especies. Toda la información concerniente a la 
distribución geográfica de las especies se georreferenció, 
de tal manera que fuera posible asignarla a una celda en 
particular. De esta manera, fue posible calcular la riqueza 
de especies en cada celda del territorio nacional.
Mapas de riqueza estimada de especies. Kriging: a partir 
de los datos de riqueza conocida se estimó la riqueza 
total de especies con el método de interpolación Kriging 
y Co-Kriging (Apéndice 2). Para emplear la técnica de 
interpolación con el primer método, se debe ajustar el 
variograma experimental (ecuación 1; Goovaerts, 1999) 
de los valores de riqueza total de especies a un modelo 
permisible.
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donde xi y xi+h son localidades muestreadas separadas 
por una distancia h, y Z(xi) y Z(xi+h) son los valores de 
Z observados, en este caso, riqueza de especies para las 
localidades correspondientes.

Se evaluaron 7 modelos (esférico, exponencial, 
gaussiano, lineal, matern, bessel y pentaesférico) y se 
seleccionó aquel que tuviera el menor valor de error 
(ecuación 2; Cressie, 1985).
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donde m es número de lag (2 localidades separadas por una 
distancia determinada), ~ son los valores de semivarianza 

para cada distancia, 𝛾 son los valores de semivarianza del 
modelo de predicción permisible y wi son los factores de 
semivarianza obtenidos mediante la ecuación (ecuación 3; 
Cressie, 1985):

	 w N
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	 (3)

donde N es el número de pares de puntos usados para 
calcular ~ de cada distancia. Después de seleccionar el 
modelo permisible que mejor se ajusta a la semivarianza 
experimental de los valores de riqueza de especies 
observada por celda, se procedió a realizar la interpolación 
con Kriging. Se evaluaron 3 modelos Kriging (simple, 
ordinario y universal) con la técnica de “validación-cruzada 
10-fold”. Se seleccionó el Kriging con menor error de 
precisión para realizar la interpolación con base en el error 
medio (ME; ecuación 4), el cual debe ser cercano a 0; de 
igual manera, la raíz del error cuadrático medio (RMSE; 
ecuación 5) debe ser menor que la varianza de la muestra 
y la media estandarizada del error de predicción (MSPE; 
ecuación 6) debe ser cercana a 0.
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donde ~z (xi) es el valor estimado de riqueza de especies, 
z(xi) es el valor de riqueza de especies conocido, N es el 
tamaño de la muestra y σ es la varianza de los valores 
medidos de riqueza de especies (Kravchenko y Bullock, 
1999). Cabe mencionar que una prueba de χ2 no se puede 
aplicar debido a que es sensible al estudio de residuales 
(Agresti, 2007).

Co-Kriging. Para emplear la técnica de Co-Kriging se 
utiliza una covariable o predictor que esté correlacionada 
con la variable de interés (en este caso, la riqueza total de 
especies). Como variable predictora se utilizaron los datos 
por celda de las especies de la familia Asteraceae. Esta 
familia es una buena indicadora a distintos niveles de la 
jerarquía taxonómica (Villaseñor et al. 2005b, 2007), además 
de que cumple con los supuestos mencionados por Pearson 
(1994) para un buen taxón indicador, es decir, su taxonomía 
es bien conocida y existen evidencias que sus patrones 
de distribución se correlacionan con otros taxa (Fig. 2).

Para realizar la interpolación con Co-Kriging, primero 
se debe ajustar un variograma-cruzado experimental, 
donde ~

ij(h) describe la covarianza entre 2 especies, la 

z~

Z~
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i especie de interés y j, la especie conocida del taxón 
sustituto (ecuación 7; Goovaerts, 1999).
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donde xj y xj+h son localidades muestreadas separadas 
por una distancia, h y Z(xj) y Z(xj+h) son los valores de 
Z medidos (riqueza de especies de Asteraceae) para las 
localidades correspondientes. Una vez ajustado el “cross-
variograma”, se realizó la predicción especial con Co-
Kriging (Waller y Gotway, 2004).

Clases en mapas de riqueza de especies. Para 
determinar el intervalo y número de clases de cada una 
de los mapas, se utilizó el método propuesto por Law et 
al. (2009), el cual consiste en tomar en cuenta la media y 
desviación estándar de los valores de la riqueza de especies 
del mapa para determinar las clases.

Software. Los análisis estadísticos y geoestadísticos 
se realizaron con el paquete estadístico R (Bivand et al., 
2008; R Core Team, 2012). Para ello, se emplearon las 
librerías rgdal, spdep y gstat. La edición de los mapas se 
hizo en Quantum GIS 1.7.4 “Wroclaw”.

Resultados

La flora vascular de México registrada fue de 22 928 
especies, número muy similar a la cifra de 22 185 especies 
reportada por Conabio (2008). La riqueza conocida de 
especies analizada en cada una de las 253 celdas reporta 
una media de 896 especies, con un valor mínimo de 19 y 
un máximo de 3 909 (Apéndice 1). Más de la mitad de las 

celdas (67%) registra valores de riqueza menores a 1 000 
especies, 21% de ellas tienen valores de riqueza entre 1 000 
y 2 000 especies y el 12% restante registra más de 2 000 
especies. Por otra parte, los valores de riqueza conocida de 
Asteraceae por celda registran una media de 157, con un 
valor mínimo de 12 y un máximo de 488. Un porcentaje de 
celdas similar al de la riqueza total (69%) registra menos 
de 200 especies, mientras que 24% registran entre 200 y 
400 especies y el 7% restante de celdas reporta más de 400 
especies de esta familia (Apéndice 1).

De los 7 modelos permisibles evaluados, el modelo 
pentaesférico fue el que mejor se ajustó a los datos de 
riqueza total de especies (Fig. 3a). El variograma muestra 
la existencia de autocorrelación espacial entre los datos 
de riqueza total de especies a una distancia no mayor 
de 2.46 grados (range) y más allá de esta distancia la 
autocorrelación disminuye. Además, presenta una 
estructura espacial fuerte porque la relación entre el valor 
de semivarianza del nugget y el sill es menor de 0 (Mulla 
y McBratney, 2002).

Para realizar la predicción espacial se utilizó Kriging 
universal, pues dicho método mostró el menor error en 
comparación con los otros 2 métodos (ordinario y simple), 
de acuerdo con la prueba de “validación-cruzada 10-fold” 
(Cuadro 1). Esta predicción espacial se muestra en la 
figura 3b.

El Kriging universal estima que los valores de riqueza 
total de especies oscilan desde 71 (la celda con menor 
riqueza) a 3 086 (la celda con mayor riqueza). Las celdas 
con menores valores de riqueza se ubican principalmente 
en sitios con matorral xerófilo o bosque estacionalmente 
seco. Las zonas con valores de riqueza intermedios se 
asocian con los bosques templados y los bosques tropicales 
húmedos, mientras que las celdas con mayor riqueza 
estimada se ubican en zonas con bosques templados y 
bosques húmedos de montaña.

El variograma cruzado de la riqueza conocida de 
especies con la riqueza de Asteraceae se ajustó mejor a 
un modelo exponencial (Fig. 4a). El mapa que resultó de 

Figura 2. Relación entre el número total de especies conocidas 
por celda y el número de especies de Asteraceae (Número de 
celdas= 253).

Cuadro 1. Estadísticas de la prueba de “validación-cruzada 10-
fold” (errores) con las técnicas de Kriging y Co-Kriging

Método ME RMSE MSPE
Co-Kriging 0.0044 0.3935 0.1550
Universal -0.0162 0.8211 0.6743
Ordinario -0.0131 0.8553 0.7320
Simple 0.4491 0.9830 0.9663

ME: error medio; RSME: raíz del error cuadrático medio; 
MSPE: media estandarizada del error de predicción.
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la predicción espacial con Co-Kriging se presenta en la 
figura 4b. El mapa muestra una distribución de la riqueza 
total de especies estimada muy similar a la observada con 
el modelo Kriging universal. Las áreas con menor riqueza 
de especies se localizan al norte del país y las zonas con 
mayor riqueza de especies en algunos sitios de la Faja 
Volcánica Transmexicana y en los estados de Chiapas y 
Oaxaca.

Discusión

Aunque muy semejantes en sus patrones de riqueza, 
las diferencias en la distribución de la riqueza estimada 
de especies entre los 2 mapas generados (Figs. 3b, 4b) 
radican principalmente en la superficie que cada intervalo 
de clasificación predice, además del número mínimo y 
máximo de riqueza total de especies. El mapa generado 
con Kriging universal predice más áreas con mayor riqueza 
(más de 1 310 especies), mientras que el mapa obtenido 
con Co-Kriging predice más áreas con una riqueza total 
de especies menor a 1 310. Los intervalos de riqueza 
total de especies estimadas varían de 20 a 3 806 para el 
mapa generado con Kriging y de 61 a 2 421 para el mapa 
generado con Co-Kriging, con un promedio general de 
765 especies.

En general, se puede afirmar que con las técnicas de 
predicción espacial utilizadas (Apéndice 2), los mapas 
generados muestran buena precisión, puesto que presentan 
errores cercanos a 0 (Cuadro 1), porque se puso atención 
a la autocorrelación espacial de los datos, ya que los 
valores de riqueza de especies de un sitio en particular 
están influenciados por los valores de riqueza de las 

localidades vecinas (Jiguet et al., 2005). Sin embargo, de 
acuerdo con la prueba de “validación-cruzada 10-fold”, el 
mapa generado con Co-Kriging tiene menor error (Cuadro 
1); estos resultados concuerdan con trabajos previos en 
Geoestadística, que recomiendan usar covariables si es que 
se cuenta con ellas, pues se obtienen mejores resultados en 
la predicción espacial (Mulla y McBratney, 2002; Waller 
y Gotway, 2004; Hengl, 2009).

Varias de las entidades que se registran en este trabajo 
con mayor riqueza de especies ya han sido discutidos 
en estudios previos. Por ejemplo, en Chiapas, González-
Espinosa et al. (2004) evaluaron la riqueza de especies de 
árboles, utilizando cuadros de 5 × 5 minutos. No obstante, 
la diferencia en escalas, la ubicación de las áreas con 
mayor riqueza de árboles es bastante similar al patrón de 
distribución de riqueza de especies mostrado en la figura 
4b para el estado. En el estado de Oaxaca la distribución 
de áreas con más de 1 300 especies sigue una orientación 
principalmente de norte a sur (Fig. 4b), que coinciden con la 
distribución de los bosques templados como lo mencionan 
Suárez-Mota y Villaseñor (2011); dicho bioma templado 
en este estado no sólo es uno de los que registran mayor 
riqueza total, sino también mayor número de endemismos 
en México.

Los resultados de la predicción espacial pueden 
mejorarse evaluando otras características de la estructura 
espacial de los puntos, así como empleando técnicas 
híbridas. Por ejemplo, en este trabajo no se evaluó la 
anisotropía de los datos, es decir, si la semivarianza tiene 
igual comportamiento a través del espacio. Una técnica 
híbrida que valdría la pena explorar es la de Regresión-
Kriging (RK). Esta técnica utiliza una regresión con 

Figura 3. a, variograma que mejor se ajustó a la riqueza total de especies (nugget= 0, range= 2.46, sill= 0.94, modelo teórico= 
pentaesférico); b, mapa de riqueza de especies generado con Kriging universal.

b

a
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información auxiliar (variables ambientales o biotaxones) 
y después se usa un Kriging simple con media conocida 
(0) para interpolar los residuales del modelo de regresión 
(Hengl et al., 2007). Con la técnica de RK se han 
obtenido mejores resultados en la generación de mapas 
de propiedades de suelos (Hengl et al., 2004), tipos de 
vegetación (Miller et al., 2007) y distribución de especies 
(Allouche et al., 2008; Hengl et al., 2009).

Otro objetivo posterior importante sería realizar el 
análisis aumentando la escala de trabajo a minutos. Los 
mapas de riqueza de especies generados en este trabajo 

se hicieron incorporando la información en celdas de 1 
× 1 grados. Sin embargo, sería necesario generar mapas 
de riqueza de especies con información a celdas de 
mayor escala, para evaluar los patrones de distribución 
de la riqueza de especies y progresivamente incrementar 
la escala para su comparación. Esto podría hacerse con 
información auxiliar o covariables, ya sea con biotaxones 
o predictores ambientales que ya tengan información a 
escalas más grandes y emplear alguna de las técnicas de 
predicción espacial mencionadas. De esta manera se podrá, 
en el caso de México, evaluar en un futuro la hipótesis de 

Figura 4. a, variograma-cruzado de la riqueza de especies (RE) conocidas y de la riqueza de Asteraceae (RA) por celda (Número de 
celdas= 253); b, mapa de riqueza de especies generado con Co-Kriging.

a

b
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que la relación entre variable y covariables se mantiene a 
diferentes escalas de estudio (Pearson y Carroll, 1999).
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Apéndice 1. Se indica para cada celda (primera cifra; Fig. 1) los valores de riqueza de especies, tanto conocida (segunda cifra) como 
estimada con Kriging universal (tercera cifra) y con Co-Kriging (cuarta cifra).

1,38,190,64; 2,1181,218,971; 3,177,338,192; 4,373,336,358; 
5,357,296,319; 6,335,248,442; 7,568,249,510; 8,378,264,334; 
9,461,219,477; 10,457,277,535; 11,611,216,520; 
12,115,347,144; 13,1444,246,1383; 14,936,248,636; 
15,47,219,52; ;16,83,110,166; 18,97,241,82; 9,776,187,687; 
20,115,236,120; 21,32,231,17; 22,123,199,143; 23,99,231,123; 
24,144,282,228; 25,954,317,760; 26,957,236,762; 27,19,266,30; 
28,60,187,85; 29,75,125,40; 30,9,231,16; 32,125,211,176; 
33,234,170,318; 34,103,184,120; 35,314,172,313; 
36,106,231,66; 37,166,280,170; 38,143,436,142; 39,544,375,586; 
40,470,263,302; 41,901,204,530; 42,1250,259,1162; 
43,142,276,155; 44,953,181,660; 45,1153,228,965; 
46,453,147,287; 47,16,155,23; 49,161,125,153; 50,230,145,181; 
51,132,244,168; 52,266,196,358; 53,323,239,277; 
54,372,234,423; 55,133,352,100; 56,1004,420,1000; 
57,1444,482,1151; 58,99,477,211; 59,390,251,666; 
60,1260,201,811; 61,119,202,106; 62,149,306,183; 
63,959,212,580; 64,49,216,102; 65,37,144,49; 66,46,227,53; 
67,480,159,423; 68,571,209,482; 69,543,251,491; 70,171,285,91; 
71,223,381,276; 72,2383,507,3363; 73,1794,585,1316; 
74,838,344,835; 75,39,295,50; 76,52,199,65; 77,158,182,180; 
78,151,261,205; 79,236,281,306; 80,96,259,207: 81,386,113,129; 
82,43,125,58; 83,96,229,97; 84,258,224,267; 85,208,271,367; 
86,592,395,321; 87,1163,397,1207; 88,742,326,484; 
89,95,224,154; 90,69,199,115; 91,135,181,100; 92,605,237,397; 
93,912,357,568; 94,1098,344,653; 95,642,187,286; 
96,22,147,41; 97,20,183,22; 98,654,109,421; 99,114,198,122; 
100,735,189,631; 101,100,253,115; 102,154,226,103; 
103,106,219,57; 104,404,331,763; 105,533,248,374; 
106,210,203,363; 107,84,223,72; 108,181,291,233; 
109,713,327,475; 110,1417,371,1156; 111,1137,294,1012; 
112,72,219,96; 113,25,262,41; 114,823,169,601; 
115,109,165,101; 116,291,177,241; 117,260,195,394; 
118,62,169,52; 119,13,193,27; 120,1487,135,975; 
121,1720,216,986; 122,121,341,94; 123,249,289,451; 
124,132,345,246; 125,197,493,230; 126,364,505,380; 
127,459,507,804; 128,459,355,981; 129,759,349,532; 
130,364,289,314; 131,287,135,373; 132,992,94,811; 133,2,298,3; 
134,359,207,407; 135,903,323,1373; 136,860,464,626; 

137,606,518,523; 138,260,634,322; 139,460,555,448; 
140,536,647,262; 141,1486,506,1560; 142,378,458,319; 
143,215,369,115; 144,63,122,21; 145,114,98,207; 
147,265,443,284; 148,610,739,1154; 149,2001,741,1341; 
150,1156,738,885; 151,464,765,840; 152,975,797,1165; 
153,589,854,913; 154,607,602,314; 155,242,432,345; 
156,334,254,115; 157,523,534,651; 158,1626,864,1383; 
159,1369,1159,1519; 160,1202,992,1049; 161,961,937,867; 
162,807,1101,865; 163,2547,1024,2242; 164,931,926,894; 
165,576,557,330; 166,32,354,46; 167,454,253,463; 
168,656,362,298; 169,785,345,407; 170,166,486,292; 
171,686,558,825; 172,1642,978,1708; 173,2384,1048,2019; 
174,476,1235,674; 175,546,1233,523; 176,1058,1389,1272; 
177,2534,1512,2192; 178,2573,1300,2951; 179,783,903,774; 
180,128,590,240; 181,730,202,469; 182,361,336,425; 
183,348,398,541; 184,315,442,366; 185,527,347,285; 
186,2,179,14; 187,1089,337,477; 188,3364,518,3429; 
189,2070,771,1861; 190,1658,864,1334; 191,2025,1083,1924; 
192,1831,1397,2048; 193,2522,1786,2386; 194,1705,1757,1956; 
195,2225,1228,2076; 196,2983,542,2696; 197,15,821,19; 
198,35,383,41; 199,643,302,633; 200,210,384,420; 
201,419,390,360; 202,774,342,542; 203,180,24,47; 
204,13,618,15; 205,815,282,1145; 206,519,465,1222; 
207,1283,729,927; 208,995,1404,1180; 209,2852,1488,2269; 
210,1488,1824,1451; 211,2627,1609,2741; 212,1518,1527,1238; 
213,1406,601,1232; 214,2302,475,1751; 215,98,679,198; 
216,757,368,305; 217,284,392,375; 218,1479,358,753; 
219,1286,283,552; 220,381,396,351; 221,192,426,151; 
222,8,491,2; 223,911,301,857; 224,1384,598,1508; 
225,2906,787,2991; 226,1737,1177,2067; 227,2515,1390,2325; 
228,3909,1153,3024; 229,345,1253,761; 230,1108,1076,500; 
231,1033,850,810; 232,1466,702,1634; 233,285,594,508; 
234,39,436,85; 235,57,434,203; 236,56,505,48; 237,613,348,289; 
238,138,770,326; 239,1533,1019,1435; 240,1520,1347,2467; 
241,2427,1109,1402; 242,1403,1006,2023; 243,3100,896,2888; 
244,2113,844,2476; 245,3416,591,1314; 246,1117,359,557; 
247,61,809,51; 248,1608,634,1598; 249,1274,945,1127; 
250,582,1085,342; 251,2509,759,2796; 252,477,843,653; 
253,198,1011,224134
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Apéndice 2. “Script” para realizar un ejemplo de cómo calcular la riqueza de especies con los métodos de Kriging y Co-Kriging 
en R. Para mayor detalle se pueden consultar las librerías gstat (Pebesma, 2004) y rgdal (Keitt et al., 2011). Los comentarios en el 
Script están marcados con el símbolo de #. En “C” se debe de crear una carpeta que se llame “Ejemplo k_ck” y copiar el archivo 
“coor_sr.csv”, para después poder ejecutar el Script.

library(gstat) #Cargar librería
###########Cargar archivo##############
#Se escribe la ruta y el nombre del archivo "coor_sr.csv"
rte=read.csv("C:/Ejemplo k_ck/coor_sr.csv")
#Se muestra la estructura del objeto "rte". Es una hoja de datos
#que tiene 5 columnas y 48 filas.
str(rte)
# # # # # # # # # # # # # # # # # # # # A n á l i s i s 

Visual######################
#Cálculo de correlación entre riqueza de especies y Asteraceae, 

la cual es de 0.89
cor(rte$tsp,rte$asp)
#Graficar riqueza total de especies vs riqueza de Asteraceae
plot(rte$asp,rte$tsp,xlab="Número de 

Asteraceae",ylab="Número Total de Especies",
pch=20)
abline(lm(rte$tsp~rte$asp))
text(50,3000,”r=0.89”)
#Evaluación de la distribución de las valores de riqueza de 

especies
#Se realiza una análisis visual de la distribución de la riqueza 

total de especies y
#Asteraceae. El histograma muestra que no existe distribución 

normal para
#los valores de riqueza total de especies
par(mfrow=c(2,1))
hist(rte$tsp,main=””,xlab=”Riqueza total de 

especies”,ylab=”Frecuencia”)
hist(rte$asp,,main=””,xlab=”Riqueza de 

Asteraceae”,ylab=”Frecuencia”)
#Se aplica logaritmo a los valores de riqueza para ajustar a una 

distribución normal.
#En análisis posteriores los valores de riqueza total de especies 

serán transformados con #logaritmo. Existen otras funciones 
para realizar la transformación de las variables como

#raíz cuadrada y cuarta, log (1 + x), etc.
#Se grafican los valores de riqueza de especies transformados
hist(log(rte$tsp),main=””,xlab=”Riqueza total de especies”,
ylab=”Frecuencia (log transformación)”)
###############################Selección de variograma 

y Kriging##########
#La hoja de datos “rte” se tranforma a 

“SpatialPointsDataFrame”,
#formato requerido por la librería “gstat” para aplicarle sus 

funciones
rte.coor=rte
coordinates(rte.coor)=~x+y
str(rte.coor)
###Seleccion y ajuste de semivariograma###
#Primero se evalúa la estructura espacial de los datos con la 

ayuda de variograma

#que grafica la semivarianza y la distancia entre pares de 
puntos

Variograma.Var=variogram(log(rte$tsp)~x+y,rte.coor)
#Se grafica el semivariograma para obtener los parámetros de 

inicio para
#hacer su ajuste (sill, range y nugget).
plot(Variograma.Var)
# En el punto 4 se observa la asintota del variograma (sill).
#El valor de 4 se sustituye en los parámetros de sill y range para 

obtener los parámetros
# de inicio para el ajuste de modelos permisibles
sill=Variograma.Var[4,3]
range=Variograma.Var[4,2]
nugget=min(Variograma.Var[,3])
#Se generan 7 modelos permisibles con los parámetros de 

inicio
Esférico=vgm(sill,”Sph”,range,nugget,variogramModel=Variog

rama.Var)
Exponencial=vgm(sill,”Exp”,range,nugget,variogramModel=Va

riograma.Var)
Gaussiano=vgm(sill,”Gau”,range,nugget,variogramModel=Vari

ograma.Var)
Lineal=vgm(sill,”Lin”,range,nugget,variogramModel=Variogra

ma.Var)
Matern=vgm(sill,”Mat”,range,nugget,variogramModel=Variogr

ama.Var)
Bessel=vgm(sill,”Bes”,range,nugget,variogramModel=Variogra

ma.Var)
Pentaesf=vgm(sill,”Pen”,range,nugget,variogramModel=Variog

rama.Var)
#Se ajustan los modelos permisibles
fit.Esférico=fit.variogram(Variograma.Var,Esférico)
fit.Exponencial=fit.variogram(Variograma.Var,Exponencial)
fit.Gaussiano=fit.variogram(Variograma.Var,Gaussiano)
fit.Lineal=fit.variogram(Variograma.Var,Lineal)
fit.Matern=fit.variogram(Variograma.Var,Matern)
fit.Bessel=fit.variogram(Variograma.Var,Bessel)
fit.Pentaesf=fit.variogram(Variograma.Var,Pentaesf)
#Se evalúan los modelos y se selecciona el que tenga menor 

error, en este caso, fue el”Lineal”
attr(fit.Esférico,”SSErr”)
attr(fit.Esférico,”SSErr”)
attr(fit.Exponencial,”SSErr”)
attr(fit.Gaussiano,”SSErr”)
attr(fit.Lineal,”SSErr”)
attr(fit.Matern,”SSErr”)
attr(fit.Bessel,”SSErr”)
attr(fit.Pentaesf,”SSErr”)
#Se obsevan los parámetros con los que se ajustó el variograma
#sill parcial (psill)=0.574, nugget=0.078 y range=1.719
fit.Lineal
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#Se grafica el variograma ajustado que fue el lineal
plot(Variograma.Var, pl=F,model=fit.Lineal,
,col=”blue”,pch=20,main=”Variograma ajustado con modelo 

Linear”,xlab=”Distancia”,ylab=”Semivarianza”)
###Análisis de de validacion cruzada para calcular la precisión 

de3 Kriging###
###Aviso checar que no haya valores con iguales 

coordenadas###
#La validación cruzada se realiza empleando 10-fold para medir 

los errores de ajuste de3 #kriging, universal, ordinario #y 
simple

#Universal
U.cross=krige.cv(log(tsp)~x+y,rte.coor,fit.Lineal,nfold=10)
#Ordinario
O.cross=krige.cv(log(tsp)~1,rte.coor,fit.Lineal,nfold=10)
#Simple
S.cross=krige.cv(log(tsp)~1,rte.coor,fit.Lineal,nfold=10,beta=5)
#Transformar a hoja de datos
Ures=as.data.frame(U.cross)$residual
Ores=as.data.frame(O.cross)$residual
Sres=as.data.frame(S.cross)$residual
#Mean Error(ME)
U.ME=mean(Ures)
O.ME=mean(Ores)
S.ME=mean(Sres)
ME=c(U.ME,O.ME,S.ME)
#Root Mean Squared Error (RMSE)
U.RMSE=sqrt(mean(Ures^2))
O.RMSE=sqrt(mean(Ores^2))
S.RMSE=sqrt(mean(Sres^2))
RMSE=c(U.RMSE,O.RMSE,S.RMSE)
#Mean Standardized Prediction Error (MSPE)
U.MSPE=mean(Ures^2)
O.MSPE=mean(Ores^2)
S.MSPE=mean(Sres^2)
MSPE=c(U.MSPE,O.MSPE,S.MSPE)
datos=c(ME,RMSE,MSPE)
Evaluación=matrix(datos,nrow=3,ncol=3,byrow=TRUE,
dimnames = list(c(“ME”, “RMSE”,”MSPE”),
c(“Universal”, “Ordinario”, “Simple”)))
#Se imprime una tabla donde se muestran los errores obtenidos 

por
#la validación cruzada
Evaluación#Kriging Universal el de menor error
#####################Selección de co-variograma y 

Co-Kriging#################
#Se modela la co-regionalización de los datos empleando la 

función gstat. Donde los modelos se #ajustan simultáneamente 
en forma directa y con variograma-cruzado

#Se crea el objeto gstat para especificar los variogramas 
experimentales

#Se llena el primer marco del objeto gstat con los valores de 
riqueza total

g2=gstat(id = “rte”, fórmula = log(tsp)~1, data = rte.coor)
#Posteriormente, se adicionan los valores de riqueza de 

Asteraceae, el objeto gstat,

#ahora tiene 2 marcos
g2=gstat(g2,id = “Asteraceae”, formula = asp~1,data = rte.

coor)
#Se adicionan parámetros de inicio para ajustar los modelos
g2=gstat(g2,id = “rte”, model=vgm(psill=0.5744, 

“Lin”,range=1.72, nugget=0.078))
g2=gstat(g2,id = “Asteraceae”, model=vgm(psill=0.5744, 

“Lin”,range=1.72, nugget=0.078))
v.cross2 <- variogram(g2)
g2=gstat(g2,id = “rte”, model=vgm(psill=0.5744, 

“Lin”,range=1.72, nugget=0.078),fill.all=T)
#Se realiza el ajuste de los modelos
(g2 <- fit.lmc(v.cross2, g2))
#Se grafica variogramas ajustados directo y cruzado
plot(variogram(g2), model=g2$model,col=”blue”,pch=20)
###Validación cruzcada de CoKriging###
c.v=gstat.cv(g2,nfold=10)
#Se obtienen los valores de error del ajuste de los modelos
MEco=mean(c.v$residual)
RMSEco=sqrt(mean(c.v$residual^2))
MSPEco=mean(c.v$residual^2)
MEco
RMSEco
MSPEco
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # P r e d i c c i ó n 

espacial#############################
#Delimitar área de estudio con base en las coordenadas mínimas 

y máximas
#de los puntos de muestreo
xmin=min(rte$x)
xmax=max(rte$x)
ymin=min(rte$y)
ymax=max(rte$y)
#Resolución de 1km aprox
reso=0.008333
#Hacer Grid donde se almacenan datos interpolados
grid.xy <- expand.grid(x = seq(xmin,xmax,by=reso),y= 

seq(ymax,ymin,by=-reso))
coordinates(grid.xy) <- ~x + y
gridded(grid.xy)=T
###Interpolación Kriging###
#Se realiza la predicción espacial empleando el modelo teórico 

lineal y Kriging universal
Predicción=krige(log1p(tsp)~ 1,rte.coor,grid.xy ,fit.Lineal)
#Se elimina el logaritmo a valores de riqueza total, si es que se 

aplica, y se guarda el resultado en #nueva columna la “tsp”
Predicción$tsp=exp(Predicción$var1.pred)
#Se elimina el logaritmo a valores de varianza de la riqueza 

total, si es que se aplica y se guarda #los valores en nueva 
columna la “vtsp”

Predicción$vrte1g=exp(Predicción$var1.var)
###Interpolación Co-Kriging###
Ck=predict.gstat(g2,grid.xy)
# Se elimina el logaritmo a valores de riqueza total, si es que 

se aplica, y se guarda el resultado en #en nueva columna 
la “ck”
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Ck$ck=exp(Ck$rte.pred)
# Se elimina el logaritmo a valores de varianza de la riqueza 

total, si es que se aplica y se guarda #los valores en nueva 
columna la “ckv”

Ck$ckv=exp(Ck$rte.var)
###Presentación de mapas###
#Se grafican los mapas de riqueza total y la varianza de los 

valores de riqueza total
krig=spplot(Predicción[“tsp”],main=list(“a)”,cex=2),scales = 

list(draw = T),ylab=list(“Coordenada Y”,cex=1.3),
col.regions = bpy.colors(100))
co.krig=spplot(Ck[“ck”],main=list(“b)”,cex=2),scales = list(draw 

= T),xlab=list(“Coordenada X”,cex=1.3),
col.regions = bpy.colors(100))
print(krig, position=c(0,0,0.5,1), more = TRUE)#a)Riqueza de 

especies con Kriging

print(co.krig, position=c(0.5,0,1,1), more = FALSE)#b)Riqueza 
de especies con Co-Kriging

###############################Exportación de 
cobertura##################

library(rgdal) #cargar librería
###Se exporta la capa de riqueza de especie generada por Kriging 

en formato Geotiff###
rts=Predicción[“tsp”]#riqueza total de especies
writeGDAL(rts,”C:/Ejemplo k_ck/rtsKU.

tif”,drivername=”GTiff”,options=NULL)
### Se exporta la capa de riqueza de especie generada por Co-

Kriging en formato Geotiff###
rts_ck=Ck[“ck”]#riqueza total de especies Co-Kriging
writeGDAL(rts_ck,”C:/Ejemplo k_ck/rtsCk.

tif”,drivername=”GTiff”,options=NULL)
1

Nota: Se recomienda consultar las siguientes fuentes de información: http://spatial-analyst.net/
Fortin, M. J. y M. Dala. 2008. Spatial analysis, a guide for ecologists. Cambridge University Press. 392 p.


