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Spatial databases
México maintains several databases with biotic or abiotic information that enable large scale-studies (for exam-
ple, at a resolution of 1 km2); unfortunately, there is no information at this resolution for soil properties. The goal
of this paper was to generate a set of soil variables to address this absence.We evaluated 4400 soil samples taken
onMexican territory. The following nine soil properties were evaluated for each sample: Ca, K,Mg, Na, organic C,
organicmatter, electrical conductivity, sodium absorption ratio, and pH.With the use of geostatisticalmethods, a
layer was generated for each soil property after six different semivariance models were evaluated. The kriging
model (simple, ordinary, or universal) was selected as the best semivariance method with a 10-fold cross-
validation approach. Exponential, pentaspherical, and spherical models were selected with ordinary and univer-
sal krigingmethods to spatially predict the soil properties. Five classes for each soilmapwere generated. The nine
soil properties were classified primarily as slightly low or medium according to their distribution throughout
Mexican territory.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge of the distribution of soil properties is important because
it provides information regardingwhich actions to take, including sam-
pling strategies, specific handling methods, and studies of the relation-
ships between soil properties and the distribution patterns of other
parameters (Ayoubi et al., 2007; Cruz-Cárdenas et al., 2012; López-
Mata et al., 2012). Classic statistical methods should not be used to an-
alyze spatial distribution because they are based on the assumption of
seasonality in space and time, independent data, and an identical distri-
bution of parameters (Rossi et al., 1992). Instead, starting from the as-
sumption that the value at any given point is not independent of the
values of neighboring points, there is a spatial dependence that allows
the use of geostatistical analysis techniques (Wagner, 2003). The first
stage in geostatistical methods is to evaluate the spatial structure of
the data, which is usually described using an experimental variogram.
This is a graph of the semivariance between pairs and their distance in
geographical space. A variogram is defined by permissible theoretical
models (exponential, spherical, and logarithmic) and the following pa-
rameters: the sill—the difference of the mean squares of two indepen-
dent observations; the range—the maximum distance at which pairs
Cruz-Cárdenas).

ghts reserved.
of observations can be influenced or are autocorrelated; and the
nugget—the variance within a sampling unit. After the spatial autocor-
relation structure has been determinedwith the variogram, a kriging in-
terpolation is carried out (Mulla and McBratney, 1999). Several studies
have been performed using geostatistical techniques at a plot or region-
al level to analyze the spatial distribution of soil properties (Hengl et al.,
2007; Kravchenko andBullock, 1999;Mueller et al., 2001; Robinson and
Metternicht, 2006). However, at the national or global level, there have
been only a few studies; nevertheless, the FAO's HarmonizedWorld Soil
Database has assumed the task of gathering existing information on soil
properties to generate worldwide maps and, therefore, national maps.

Large-scale global or national databases (for example, at a resolution
of 1 km2) are important to create data entries that can be used by
computer algorithms to model phenomena of interest. Such databases
make it possible to determine the behavior of phenomena with greater
confidence, either spatially or temporally. Several of these databases
are accessible online; for example, of the 19 bioclimatic variables of
WorldClim (http://www.worldclim.org/), 11 are temperature variables
and the remaining 8 are precipitation variables (Hijmans et al., 2005).
Remote sensing databases, such as the MODIS database, are also avail-
able and contain information on a daily, 8-, 16-, or 30-day basis. Digital
elevation models are another dataset commonly used in environmental
analyses. These variables arewidely used, especially tomodel the poten-
tial distribution of species (Elith et al., 2006), to digitally map soils
(McBratney et al., 2003), and to evaluate land-use changes (Hansen
et al., 2000).
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Fig. 1. Soil sampling point distribution in Mexico.
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México is one country that has no available information on soil
properties at a national level. This information would be useful
because it would complement research on modeling, cartography,
and soil-use change, among others. Therefore, the aim of this
Fig 2.Boxplots of trimmed soil properties. a) Calcium (cmol L−1); b) electrical conductivity (dS
organic matter (%); g) sodium (cmol L−1); h) pH; i) sodium absorption ratio.
paper is to generate and present soil coverages for nine soil proper-
ties on a large scale,1 km2 resolution (30" arc). To do so, we used a
dataset obtained from soil sampling throughout Mexican continen-
tal territory.
m−1); c) organic carbon (kgm–2); d) potassium (cmol L−1); e)magnesium(cmol L−1); f)



Table 1
Descriptive statistics of the nine soil variables.

Variable Coefficient of
variation (%)

Raw data 4√-transformed data

Skewness Kurtosis Skewness Kurtosis

Ca (cmol L−1) 86.30 1.29 1.12 −0.04 −0.75
EC (dS m−1) 158.33 4.08 18.37 −0.16 −0.36
OC (kg m−2) 76.60 0.99 0.23 −0.18 −0.62
K (cmol L−1) 95.24 1.59 2.2 0.07 −0.79
Mg (cmol L−1) 85.19 3.2 14.58 −0.16 0.07
OM (%) 80.93 1.15 0.7 −0.14 −0.62
Na (cmol L−1) 116.67 2.7 7.69 −0.11 −0.19
pH 14.65 −0.82 −0.14 −0.78 −0.22
SAR (%) 98.28 2.33 6.28 −0.25 −0.28

EC: electrical conductivity; OC: organic carbon; OM: organic matter: SAR: sodium
absorption ratio.
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2. Materials and methods

2.1. Sampling and soil analyses

Random soil samples were taken from 4400 points (Ortiz-Solorio,
2002) of México's continental surface (the total surface of México is ap-
proximately 1,949,359 km2) (Fig. 1). The samples were obtained as a
composite of the first 20 cm of topsoil. The following nine variables for
each point were determined (Ortiz-Solorio, 2002): electrical conductivity
(EC), organic carbon (OC) in kg m−2, four soluble cations (Ca, K, Mg, Na),
pH, the sodium absorption ratio (SAR), and organic matter (OM).

2.2. Exploratory analysis

An exploratory analysis was performed for each variable to elimi-
nate outliers, reduce data skews andfit the data to a normal distribution.
The skewness and kurtosis were used to assess the fit of the data in a
normal distribution, and when they did not fit, an appropriate transfor-
mation was applied based on the distribution of the data.

2.3. Variogram and spatial dependence

The first step in a geostatistical analysis is to determine the spatial
dependence among the data for a particular variable. To do this, the
semivariance (γ) is calculated by employing Eq. (1) (Goovaerts, 1999).

γ hð Þ ¼ 1
2
n
Xn
i¼1

Z xi þ hð Þ−Z xið Þ½ �2 ð1Þ

where xi and xi + h are the sampled localities separated by a distance h;
and Z(xi) and Z(xi + h) are Z valuesmeasured from their corresponding
localities. When the semivariance is graphed against distance (h), an
experimental variogram is obtained; this depends on three axes, two in-
dependent variables (direction and distance h) and one dependent var-
iable (observation Z(xi)) (Gassner and Schnug, 2008). The variogram
can then be fitted using several models (spherical, exponential, Gauss-
ian, linear, and logarithmic) (Gallardo, 2006). The model that shows
Table 2
Sum of squared error of variogram models (bold lower errors).

Variogram model Ca CE CO K

Spherical 0.0011 0.00015 0.0013 0.0023
Exponential 0.0012 0.00012 0.0005 0.0012
Gaussian 0.0024 0.00025 0.0018 0.0023
Linear 0.0015 0.00039 0.0028 0.0031
Matern 0.0012 0.00013 0.0006 0.0013
Bessel 0.0011 0.00013 0.0007 0.0015
Pentaspherical 0.0010 0.00015 0.0012 0.0021
the best adjustment to the experimental variogram is preferred. For
each variable, an estimation based directly on the graphs can be
performed, but this requires enough personal experience from the
study area or the automatic use of the addition of the sum of squared
error (SSE; Cressie, 1985).

To evaluate the spatial dependence, a nugget and sill relationship
was used. A nugget:sill of 0.25 or less was considered evidence of a
strong spatial dependence, a relationship between 0.25 and 0.75 was
considered evidence of a moderate spatial dependence, and a relation-
ship greater than 0.75 was considered to be evidence of a weak spatial
dependence (Cambardella et al., 1994).

2.4. Assessment of kriging

Once the theoretical ad hocmodel for each soil property was select-
ed, a spatial inference was performed using the kriging technique. In
this study, the ordinary, simple, and universal krigingmodelswere eval-
uated with a 10-fold cross-validation. The data were divided into 10
subgroups; one of the subgroups was used as test data, and the rest
were used as training data. The cross-validation process was repeated
10-fold with each of the possible data subgroups, and prediction errors
were obtained (Pebesma, 2004). Using these prediction errors, the
mean error (ME, Eq. (2)) was calculated; this value must be close to
zero, the root mean squared error (RMSE; Eq. (3)) should be lower
than the sampling variance, and the mean standardized prediction
error (MSPE) should be close to zero (Eq. (4)).

ME ¼ 1
N

XN
i¼1

z xið Þ−bz xið Þ� � ð2Þ

RMSE ¼
ffiffiffiffi
1
N

r XN
i¼1

z xið Þ−bz xið Þ� �2 ð3Þ

MSPE ¼ 1
N

XN
i¼1

ME
σ2 xið Þ ð4Þ

wherebz xið Þ is the estimated value, z(xi) is the known value,N is the sam-
pling size, and σ is the kriging variance of xi (Kravchenko and Bullock,
1999). We chose the theoretical model with the lowest RMSE, MSPE,
and ME.

2.5. Pixel size

The pixel size of the map outcome is important to adequately repre-
sent the spatial variability of the soil properties. The inspection density
method was used to determine the pixel size. It consists of dividing the
sampling size (N) by the extent of the study area (A). The respective cal-
culations were performed using the following equations (Hengl, 2006):

Coarsest legible resolution≤0:1�
ffiffiffiffi
A
N

r
ð5Þ
Mg MO Na pH RAS

0.00002 0.0011 0.0005 0.000008 0.0008
0.00004 0.0004 0.0006 0.000004 0.0007
0.00006 0.0011 0.0015 0.000009 0.0009
0.00003 0.0022 0.0005 0.000015 0.0008
0.00004 0.0005 0.0006 0.000005 0.0008
0.00004 0.0005 0.0005 0.000005 0.0008
0.00003 0.0009 0.0004 0.000007 0.0008



Fig. 3. Variograms selected for krigings. a) Calcium (cmol L−1); b) electrical conductivity (dS m−1); c) organic carbon (kg m–2); d) potassium (cmol L−1); e) magnesium
(cmol L−1); f) organic matter (%); g) sodium (cmol L−1); h) pH; i) sodium absorption ratio. Semivariance soil properties in fourth root and distance in degrees. Blue color, fit to
pentasphericalmodel; red color,fit to the exponentialmodel; black color,fit to the sphericalmodel. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Spatial dependence of soil properties.

Variable Nugget:Sill Spatial class

Ca 0.52 M
EC 0.54 M
OC 0.66 M
K 0.57 M
Mg 0.70 M
OM 0.65 M
Na 0.44 M
pH 0.33 M
SAR 0.16 S

EC = electrical conductivity; OC = organic carbon; OM = organic matter; SAR =
sodium absorption ratio; M = moderate spatially dependent; S = strong spatially
dependent.
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Finest legible resolution≤0:05�
ffiffiffiffi
A
N

r
ð6Þ

Recommended compromise≤0:0791�
ffiffiffiffi
A
N

r
: ð7Þ

2.6. Map classes

To determine the interval and number of classes for each map (nine
soil properties), a method proposed by Law et al. (2009) was used. The
method considers the mean and standard deviation of the map's pixel
values to determine the number of classes.

2.7. Software

A geostatistical analysis was performed using the GSTAT package
(Pebesma, 2004) of the R software program (R Core Team, 2011). The
final map editing was accomplished with ArcGIS 9™.

3. Results

3.1. Exploratory analysis

The exploratory analysis detected outliers in the soil properties data.
All of the variables showed outliers beyond the upper limit of the
interquartile range. The outliers were trimmed in each soil property
datum and the results are shown in Fig. 2. The skewness and kurtosis
were calculated with the trimmed data and showed non-normal distri-
butions (Table 1). Four transformations were applied to the data, and
the 4th root was the one that obtained the best fit for a normal distribu-
tion, as the skewness and kurtosis valueswere near zero. These previous
analyses allowed us to reduce the nugget effect in the variograms of Ca,
Mg, Na, and the SAR. The construction and adjustment of the
variograms, as well as the validation tests and space prediction, were
carried out with the transformed data.

3.2. Variograms and spatial dependence

The EC, OC, K, OM, pH, and SAR semivariances were fitted to an
exponential model, the Ca and Na semivariances were fitted to a
pentasphericalmodel, and theMg semivariancewasfitted to a spherical
model (with the lower SSE of the variogrammodels; Table 2; Fig. 3). All
of the soil property variables showed a moderate spatial dependence,
with the exception of the SAR, which had a strong spatial dependence
(Table 3; Fig. 3; Cambardella et al., 1994).

3.3. Kriging

Based on the cross-validation 10-fold analysis, the ordinary and uni-
versal kriging models were selected to perform the spatial predictions
(Table 4). Ordinary kriging fitted better with the variables Ca, EC, OC,
K, and pH than universal kriging (Table 4). Universal kriging was used



Table 4
Cross-validation 10-fold statistics of krigings (bold lower errors) in nine soil variables.

Variable Universal Ordinary Simple

ME RMSE MSPE ME RMSE MSPE ME RMSE MSPE

Ca −0.0004 01351 0.0183 −4.6 × 10−5 0.1352 0.0183 −0.0590 0.1685 0.0284
EC 0.0001 0.2347 0.0551 0.0004 0.2342 0.0548 −0.0645 0.2586 0.0669
OC −7.5 × 10−5 0.0796 0.0063 0.0002 0.0794 0.0063 −0.1152 0.1855 0.0344
K 2.1 × 10−5 0.1015 0.0103 0.0003 0.1015 0.0103 −0.0708 0.1521 0.0231
Mg −0.0001 0.0828 0.0068 0.0001 0.0830 0.0069 −0.3159 0.4097 0.1679
OM −0.0002 0.1806 0.0326 0.0004 0.1802 0.0325 −0.0633 0.2088 0.0436
Na −0.0001 0.0952 0.0091 0.0002 0.0955 0.0091 −0.2910 0.3994 0.1595
pH −7.7 × 10−5 0.0382 0.0015 −6.2 × 10−5 0.0382 0.0015 −0.0237 0.0614 0.0038
SAR 0.0003 0.1156 0.0134 0.0005 0.1156 0.0134 −0.1604 0.2653 0.0704

EC: electrical conductivity; OC: organic carbon; OM: organicmatter; SAR: sodium absorption ratio;ME:mean error; RSME: rootmean squared error;MSPE:mean standardized prediction
error.
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for the spatial prediction of Mg, OM, Na, and the SAR because it showed
the lowest error in the ME and MSPE (Table 4).

3.4. Pixel size definition

Based on Eqs. (5), (6), and (7), the recommended pixel size needed
to generate layers for the nine analyzed soil properties is 1–2 km2

(Table 5).We decided to use 1 km2 pixels becausemost available online
databases use this pixel size at the global, continental, regional, or na-
tional scales.

3.5. Soil property descriptions

Based on the mean and standard deviations of the pixel-layer
values of the soil properties, maps were generated using the five in-
terval classes. The first interval corresponds to the lowest category,
the second one to the slightly lower category, the third one to the in-
termediate category, the fourth one to the slightly higher category,
and the fifth one to the highest category. This classification was
based on statistical approaches that do not always agree with the
established classifications at a national or global level, except for
the organic carbon and pH. The lowest and highest categories don't
mean they are faulty or abundant in the content of a particular soil
property; the aim was to have categories based in statistical criteria.
The soils with a slightly low or intermediate Ca content occupy more
than 80% of the Mexican territory sampled (Fig. 4a). The soils with a
high Ca content are located primarily in arid and semi-arid zones,
where the dominant parent material is limestone (Fig. 5a).

In general, the soils were not considered saline because the EC is
lower than 2 dS m−1; however, based on the proposed categories,
the soils were classified as slightly low in EC, and only 8% of the
soils showed high EC values (Fig. 4b). These latter soils were found
Table 5
Pixel sizes used to generate soil property maps.

Variable Sampling size Pixel size (km2)

Coarse Finest Best

Ca 4215 2.20 1.07 1.70
EC 4485 2.08 1.04 1.65
OC 4249 2.14 1.07 1.69
K 4432 2.09 1.04 1.65
Mg 4400 2.10 1.05 1.66
OM 4373 2.11 1.05 1.67
Na 4342 2.11 1.05 1.67
pH 4576 2.06 1.03 1.63
SAR 4301 2.12 1.06 1.68

EC: electrical conductivity; OC: organic carbon; OM: organic matter: SAR: sodium
absorption ratio.
in the arid and semi-arid climates where limestone was the parent
material, and their distribution is restricted to northern México
(Fig. 5b).

Soils with slightly low and medium OC density occupy 67%
of Mexican territory (Fig. 4c). The soils with medium or slightly high
OC density were distributed in areas where dense vegetation cover is
present (Fig. 5c), which causes organic waste material accumulation.

The soils with slightly low and medium K content were distributed
over more than 60% of the country (Fig. 4d). The soils with high K
content were found in the arid zones of northern México (Fig. 5d). In
contrast, the Mg distribution patterns in México showed no defined
tendency (Fig. 5e); therefore, slightly low and medium were the main
classes for this cation (Fig. 4e).

The organic matter amount (Fig. 4f) and distribution (Fig. 5f) were
similar to the OC; however, their classes are less continuous than
those of OC because their distribution is broken up by other classes.
For example, inside the slightly high class, several high-class areas can
be found.

TheNa slightly low andmediumclasseswere distributed throughout
the country and showed no definite pattern (Fig. 5g). On the contrary,
the high class was found mostly in the Baja California and Chihuahua
deserts and along the coastal plains of Sinaloa and Sonora.

The soil pH in México is primarily slightly alkaline and neutral
(Fig. 4h). Soils with a slightly high pH or alkaline soils are found in
arid zones (Fig. 5h), whereas acid soils with a low pH are mostly
found in temperate and tropical forests.

In general, Mexican soils can be classified as showing a medium so-
dium absorption ratio (SAR) content (Fig. 4i). The soils with high SAR
content are found mostly in the Baja California peninsula (Fig. 5i).
4. Discussion

InMéxico, the pH coefficient of variation (CV) is classified as low, but
the CV for electrical conductivity and K are high. The pH CV fluctuates
between 2 and 15%, mostly as a result of its intrinsic genesis character-
istic (Cristobal et al., 2008). The electrical conductivity CV interval varies
from 91 to 263%, and that of K oscillates between 39 and 157%. These
ranges coincide with those found by Mulla and McBratney (2002). The
moderate spatial dependence ratio class of pH, EC, OM, and SAR coincide
with the results found by Ayoubi et al. (2007). They mention that this
spatial dependence might be influenced by the mobility of nutrients.
Those that have a strong spatial dependence are more mobile than
those with a moderate spatial dependence. Based on this assumption,
Mgwould be the least mobile, and Nawould have the greatestmobility.

The selected theoretical models for the EC, K, OM, and pH agree with
those found in previous research (Kravchenko and Bullock, 1999;
Mueller et al., 2001; Robinson and Metternicht, 2006). The range pa-
rameter of the variogram can be used to determine an optimum sam-
pling space distribution with the aim of obtaining an adequate spatial



Fig. 4. Pie graph of soil properties. a) Calcium (cmol L−1); b) electrical conductivity (dS m−1); c) organic carbon (kgm–2); d) potassium(cmol L−1); e)magnesium (cmol L−1); f) organic
matter (%); g) sodium (cmol L−1); h) pH; i) sodium absorption ratio.
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pattern for a particular property, and values from 1/4 to 1/2 of the range
should be used as the reference (Mulla and McBratney, 1999). For this
study, a rank of 1/4 was selected, due to the extremely heterogeneous
topography of the country. Based on these decisions, a spatial sampling
separation of 88, 23, 39, 29, 53, 39, 39, 32, and 11 kmwas recommend-
ed for Ca, EC, K,Mg, OC, OM, Na, pH, and the SAR, respectively, at the na-
tional level.

The selected kriging models for spatial prediction were different,
depending on the soil property to be modeled. The errors obtained
from the cross-validation test are similar to those foundwithin the ranges
reported in previous studies. These values were below 1 (Robinson and
Metternicht, 2006; Scholoeder et al., 2001).

Five out of nine soil properties (Ca, EC, K, OM, and pH) showed
distribution patterns that were determined primarily by two factors
influencing soil formation: climate and parent material. In general,
the soil properties evaluated were classified as slightly low and
medium.

According to the results reported by the Global Soil Data Task Group
(2000), the organic carbon density in México is similar to that obtained
in this study,where the soils have anorganic carbon density from low to
slight. With respect to the pH, a similar distribution pattern is shown,
with predominantly medium alkaline to neutral soils. However, based
on the proposed classification, the soils in México have a slightly low
to medium SAR with the agronomic criteria considered as a low SAR
level (b6; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).

The nine soil property layers generated in this study are applicable
in different scientific fields, for example, agricultural or environmental
sciences, or as additional variables to be used in species-distribution
modeling. Their usefulness for modeling the geographic distribution
of the cloud forest in México, the most important biodiversity biome,
has already been evaluated (Cruz-Cárdenas et al., 2012; López-Mata
et al., 2012; Villaseñor, 2010). For example, organic carbon in the
soil, together with precipitation and temperature, defines the rich-
ness and potential distribution of species in this biome. Coudun
et al. (2006) found that soil properties improved a logistical model
of Acer campestre by reducing the “explained deviance”; among
these, the pH remained in the final model. These two soil variables
have also been used to model flora hotspots with the aim of outlining
priority zones for the conservation and planning of ecosystems
(Zhang et al., 2012).

Future work should evaluate the semivariance anisotropy in addi-
tion to those evaluated in this paper. Likewise, additional kriging tech-
niques, such as block kriging, indicator kriging, and co-kriging should
be evaluated because they could better adjust the data for spatial
predictions.
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Fig. 5. Soil map properties. a) Calcium (cmol L−1); b) electrical conductivity (dS m−1); c) organic carbon; d) potassium (cmol L−1); e) magnesium (cmol L−1); f) organic matter (%);
g) sodium (cmol L−1); h) pH; i) sodium absorption ratio.
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